
RMI APPLICATION FOR TRANSFERRING FILES

Nicolae Enescu, Eugen Dumitrascu and Gheorghe Marian
University of Craiova

Faculty of Automation, Computers and Electronics
5, Lapusului Street, Craiova, Romania

Email: {Nicu.Enescu; Eugen.Dumitrascu; Gheorghe.Marian}@comp-craiova.ro

Abstract: This paper deals with the issues involved in
distributed applications. In particular, we describe an
application that transfers a file between two
computers on the Internet, one of them is a Home
computer (source) and the other is a Remote
computer (destination). A Server realizes the
connection. It is important to mention that the
addresses of Home and Remote are not known. We
have to know only the Server's address. The
technology used in this application is Java RMI.

Keywords: RMI (Remote Method Invocation), Java,
JVM (Java Virtual Machine), Server, Home, and
Remote

1. INTRODUCTION

Remote Method Invocation (RMI) is the object
equivalent of Remote Procedure Calls (RPC). While
RPC allows you to call procedures over a network, RMI
invokes an object's methods over a network.

In the RMI model, the server defines objects that the
client can use remotely. The clients can now invoke
methods of this remote object as if it were a local object
running in the same virtual machine as the client. RMI
hides the underlying mechanism of transporting method
arguments and return values across the network. In Java-
RMI, an argument or return value can be of any
primitive Java type or any other Serializable Java
objects.

Remote methods are defined by remote interfaces.
That is, a remote interface defines a set of methods that
can be called remotely. Any object that wants some of its
methods to be called remotely must use one or more
remote interfaces.

An object that uses a remote interface is called a
server. An object that calls a remote method is called a
client. An object can be both a client and a server: These
names indicate only who is calling in a particular
instance and who is being called.

Once a remote interface is defined and an object that
uses the interface is created, it still needs a way for the
client to invoke methods on the server. Unfortunately, it
is not quite as easy as instantiating a server object.

A stub needs to be created for the client. An object's
stub is a remote view of that object in that it contains
only the remote methods of the object. The stub runs on
the client side and is the representative of the remote
object in the client's data space.

The client invokes methods on the stub and the stub
then invokes the methods on the remote object. This
allows any client to invoke remote methods through
normal Java method invocation. A stub is also called a
proxy.

Figure 1: A stub invokes remote methods on behalf of
a client.

RMI adds an extra feature that most RPC systems do
not have. Remote objects can be passed as parameters in
remote method calls. When a remote object is passed as
a parameter, a stub is actually passed for the object.

The real object always stays on the machine where it
was originally started. The stub that is passed then
invokes methods back to the original object. Stubs can
also be passed as parameters and work the same way.

In a distributed system, it is necessary to have a way
so that clients to find the servers they need. RMI
provides a simple name lookup object that allows a
client to get a stub for a particular server based on the
server's name. The naming service that comes with the
RMI system is fairly simplistic but is useful for most
cases.

2. THE APPLICATION

The application related in this paper contain three parts:
Server application, Home application and Remote
application.

The Server runs on a computer that has known IP
address, the Home and Remote runs on other computers
that have an unknown address. We can connect two
computers from anywhere in Internet that they have an
unknown IP address.

Client Server
Stub

ServerNetwork

The Home is connected to Server (which has a
known address), and after that the Remote is connected
to Server too. In this way the Remote can "see" the
Home, and also the Home can "see" the Remote too.
After that we can transfer /copy a file from Home to
Remote.

The Server participates to make the connection
between Remote and Home, it doesn't participates to
transfer.

Figure 2: The block schema for the application

The Server knows all the connections that are done.
It has a database in which it retains the connection name,
the Home password and the Remote password for the
authentication of the Home and the Remote.

We made the following suppositions:
- when a Home initiates a connection, the Server

verifies the existence of the connection in the
database and accepts that connection or not

- when the Remote wants to connect, first it is
verified if the connection was initiated by Home
and then it is accepted or not

- the communication between Home and Remote is
made through Server.

2.1. Server application

The Server application makes the connection
between Home and Remote applications. The following
diagram represents the interaction between Server's
operations.

Figure 3: The block diagram for the Server

"The interface with Home Computer" realizes the
maintenance of the communications with the Home
Computer, transmits the requests to the Home Computer,
and receives the responses from the Home Computer.

"The interface with Remote Computer" realizes the
maintenance of the communications with the Remote
Computer, receives the requests from the Remote
Computer, and transmits the responses to the Remote
Computer.

Figure 4: Server application

"The management of the connections" authenticates
the Home and the Remote, establishes the relations
between Home and Remote, and records the connections
between Home and Remote in a “log” file.

"The list of the active connections" holds the active
connections between Home and Remote Computers

"The database of the connections" is a database with
all the possible connections between Home and Remote
Computers. It memorizes the name of connection, the
password of Home and the password of Remote. If a
connection initiated by a Home Computer isn’t in this
database then this connection will be rejected.

Java RMI
(Remote Method Invocation)

To Home Computer

The list of the
active connections

The management
of the connections The "LOG" file

The Server
administrator

The Interface with
Home Computer

The Interface with
Remote Computer

The database of
the connections

Home
Stub

Server
Skeleton

To Home and
Remote Computer

Figure 5: Active connections

The “LOG” file is a file in which all the operations
between Server, Home and Remote Computers are
memorized.

"The Server administrator" manages the database of
the connections, and can also visualize both the active
connections between Home and Remote Computers and
the content of the “log” file.

Figure 5: Server log file

2.2. Home application

The Home application runs on a computer that
represents the source from where we want to transfer a
file. The following diagram represents the interaction
between Home's operations.

Figure 6: The block diagram for the Home

"The block for initiating and maintaining of the
connection" initiates and maintains the connection with
the Server, receives the requests from the Server and
transmits them to the block for the execution of the
requests in order to solve them, transmits the responses
received from the block for the execution of the requests

to the Server, records the operations between Home and
Server in a “log” file.

Figure 7: Home application

"The block for the execution of the requests" assumes
the requests and solves them establishing the responses

"The configuration block" establishes the connection
parameters: server address, port, connection name and
password.

The “LOG” file is a file in which all the operations
between Home and Server are memorized.

Figure 8: Home log file

2.3. Remote client application

The Remote application runs on a computer that
represents the destination where we want to transfer the
file. The following diagram represents the interaction
between Remote's operations.

Figure 9: The block diagram for the Remote

Java RMI
(Remote Method Invocation)

To ServerComputer

Home
Skeleton

Server
Stub

To Server Computer

The block for initiating and
maintaining of the connection

The block for the
execution of the requests

The configuration
block

The "LOG" file

Java RMI
(Remote Method Invocation) Server

Stub

To Server Computer

The configuration
block

The block for the
processing of the responses

The block for
transmitting the requests

The block for
initiating and maintaining

of the connection

The main requests that the Remote transmits to
Home are:

- The request for obtaining the tree of the files and
directories

- The request for transmitting a file that is specified
by name

Figure 10: Remote application

"The block for initiating and maintaining of the
connection" initiates and maintains the connection with
the Server, transmits the requests from the block for the
transmitting the requests to the Server, receives the
responses from the Server and transmits them to the
block for the processing of the responses.

"The configuration block" establishes the following
connection parameters: server address, port, connection
name and password.

"The block for transmitting the requests" establishes
the request that must be solved.

"The block for the processing of the responses"
processes the received responses.

Figure 10: The View of Home's directories tree from
Remote application

REFERENCES

Bloomer J., Power Programming with RPC,
O'Reilly, 1992

Boian Florin Mircea, Programarea Distribuita in
Internet. Metode si aplicatii, MicroInformatica, Cluj-
Napoca 2000

Crowcroft J., Open Distributed Systems,
http://www.cs.ucl.ac.uk/staff/jon/ods/ods.html

Darwin Ian, Java Cookbook , O'Reilly, 2001

Gibson Brad, Java Remote Method Invocation (RMI)
Tutorial, Implementing a Remote Command Server
in RMI

Grosso William, Java RMI, O'Reilly, 2001

IBM Redbooks, Visualage Java-Rmi-Smalltalk the
Atm Sample from A to Z, IBM Corp, 1999

Rickard Oberg, Mastering RMI: Developing
Enterprise Applications in Java and EJB, John
Wiley & Sons, 2001

Orfali R. and Harkey D., The Client/Server
Programming with Java and CORBA, John Wiley &
Sons, 1997

Pitt Esmond, McNiff Kathleen, McNiff Kathy,
Java(TM).rmi: The Remote Method Invocation
Guide, Addison-Wesley Pub Co, 2001

Qusay H. Mahmoud, Distributed Programming With
Java, Manning Publications Co., 1999

Roman Ed, Ambler Scott, Jewell Tyler, Mastering
Enterprise Java Beans, John Wiley and Sons, 2002

Sun Microsystems, Java Remote Method Invocation,
http://java.sun.com/products/jdk/rmi/

Tanenbaum A.S., Distributed Operating Systems,
Pretince Hall, 1995

Vaduva Calin Marin, Programarea in JAVA,
MicroInformatica, Cluj-Napoca 2001

Wutka Mark, et. al, Java Expert Solution

Wutka Mark, Special Edition Using Java 2
Enterprise Edition (J2EE): With JSP, Servlets, EJB
2.0, JNDI, JMS, JDBC, CORBA, XML and RMI ,
Que, 2001

*** ftp.javasoft.com/docs

*** http://java.sun.com

